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Effects of Concentration on Steady-State Viscometric
Properties of Short Chain Polymer Solutions Over the
Entire Concentration Range1

T. Kairn,2 P. J. Daivis,2,3 M. L. Matin,2 and I. K. Snook2

Relationships between viscometric behavior and concentration are observed
and evaluated through a series of nonequilibrium molecular dynamics
simulations of the behavior of 20-site polymers in solution with explicit sol-
vent across the full concentration range. The zero-shear viscosities, first nor-
mal stress coefficients and steady-state shear compliance of the solutions are
examined alongside conformational properties including the excluded volume
effect. The variation of viscosity with concentration in these solutions is
described by the Huggins equation up to relatively high concentrations. At
these high concentrations, the effects on conformation of excluded volume
interactions decline, while no clear semi-dilute region is identifiable. Although
the steady-state shear compliance of the system appears concentration-inde-
pendent, the dilute and melt behaviors of this system are accurately described
by the theories of Zimm and Rouse, respectively.

KEY WORDS: bead-rod model polymer; nonequilibrium molecular dynam-
ics; polymer solution; shear flow; viscosity.

1. INTRODUCTION

This study examines the viscometric properties of short polymer chains in
solution through a series of nonequilibrium molecular dynamics (NEMD)
simulations. The viscometric and conformational properties of short-chain
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polymer solutions are of importance to a range of polymer science appli-
cations, including lubrication technology.

Simulation-based analyses of viscometric properties have been pre-
viously undertaken using a system containing a single polymer mole-
cule, where “concentration” throughout the periodic system is determined
according to the number of solvent molecules in the periodic box [1–3].
In this study, NEMD simulations are completed on systems of 100–500
chain molecules. The polymer molecules themselves have N = 20 interac-
tion sites, and are suspended in a solvent of single-site molecules, so that
polymer concentration can be modified by altering the percentage of sites
within the simulation box which are constrained to form chains. In terms
of their conformational behavior, we have previously demonstrated [4] that
these N =20 chains can be regarded as approximately modeling real poly-
ethylene oligomers approximately 128 repeat units long, with molar mass
M �1800 g·mol−1.

Since our simulations are performed at a range of very low homoge-
neous shear rates, the zero-shear-rate viscosity, η, can be easily identified
for each concentration. Charting the changes in η as polymer concentra-
tion increases allows us to test the theories of chain behavior.

With the exception of Ref. 4, the current authors are unaware of
any other computational or experimental study of polymers which exam-
ines viscometric and conformational behavior over the entire concentration
range. The fragmentary nature of many experimental studies of viscosity
and concentration mirrors the disjointedness of the relevant theory. Sepa-
rate relations exist to describe viscosity behavior in the dilute, semi-dilute,
and concentrated regimes. The aim of the current study is to examine the
relationships between viscosity, conformation, and concentration exhibited
by a short-chain polymer solution, with reference to some of the various
theoretical models available.

2. MOLECULAR MODEL AND SIMULATION TECHNIQUE

The simulation technique used to achieve the results described in Sec-
tion 3 has been reported previously [4]. We use a NEMD code (described
by Matin et al. [5]) which explicitly applies the molecular version of the
SLLOD equations of motion (given in Refs. 4 and 5) to all particles in
the system, including those comprising the solvent and solves these equa-
tions at each time-step by a fourth-order Gear predictor–corrector scheme.
The solvent molecules are modeled as Lennard–Jones (LJ) spherical parti-
cles, while the polymer molecules are made up of 20-site chains of iden-
tical spheres. These chains are simulated according to a bead-rod model
with truncated and shifted LJ interactions between all beads (‘sites’) except
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those which are bonded to each other within a molecule. The LJ poten-
tial describing all interactions in the system is truncated and shifted so
that the potential has no discontinuity and is zero beyond a cutoff dis-
tance rc = 21/6σ (where σ is the distance at which the unshifted poten-
tial is zero). An LJ potential with this truncation point is often known as
the WCA potential [6], and it results in purely repulsive interactions. This
potential is convenient for computational work because it is short-ranged,
and therefore computationally undemanding, but still retains the essential
physics, i.e., the repulsive (excluded volume) interaction.

The molecular center of mass temperature for the polymer chains
(defined as proportional to the square of the center of mass momentum
of each chain divided by its molecular mass, per number of translational
center of mass degrees of freedom available to the molecules) is kept con-
stant through the inclusion of a thermostatting term derived from Gauss’
principle of least constraint. This algorithm, including the details of the
constraint algorithm, has been discussed previously [7–9] and we refer
the reader to previous work [10–13] on the subtle but important issues
involved in the application of homogeneous thermostats to flowing molec-
ular fluids.

Bulk behavior of this system simulated via periodic boundary condi-
tions (PBCs) and the minimum image convention, which prescribes that
the primary simulation box must be large enough so that each particle
interacts only with the closest image of another particle [14]. Here, to
allow for the homogeneous shear flow introduced to the system via the
equations of motion, we apply Lagrangian rhomboid periodic boundary
conditions, where periodic images are deformed in the x direction by an
amount dependent on their location in the y direction. These effects result
in a velocity gradient in the y-direction which, when the fluid state is at
equilibrium and the flow rate is not too great [15], is equivalent to planar
shear flow γ̇ = ∂νx/∂y. This method is periodic in space and time, allow-
ing shear flow of an infinite bulk system to be simulated over very many
time-steps.

The viscometric functions under consideration in this study are
defined in terms of components of the pressure tensor P. The pressure ten-
sor for the atomic fluid (single interaction site molecules) was calculated
using the atomic pressure tensor, given by

PAV =
〈

Na∑
i=1

pipi

Mi

− 1
2

Na∑
i=1

Na∑
j �=i

r ijF ij

〉
, (1)

while for the polymer solutions, it was calculated using the expression
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PMV =
〈
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〉
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where pi represents the total peculiar momentum of molecule i, as defined
by the equations of motion, and F inter

iαjβ represents the intermolecular force
on site iα due to site jβ. This means that the first term in each equation
represents the kinetic component while the second describes the potential
component of the pressure tensor.

For simple shear flow, ηs and Ψ1 are useful material functions for rep-
resenting and relating independent components of the stress tensor. ηs is
the generalized non-Newtonian shear viscosity of a fluid subject to strain
rate γ̇ and is defined by

ηs =−Pxy +Pyx

2γ̇
. (3)

Ψ 1 is the first normal stress coefficient, given by the first two diagonal
components of P,

Ψ1 = Pyy −Pxx

γ̇ 2
= N1

γ̇ 2
. (4)

It is related to the first normal stress difference, N1, which results directly
from restoring forces acting in opposition to any flow-induced anisotropy
in the fluid.

A general relationship linking the steady-state values of ηs and Ψ1 for
rheologically simple fluids has been identified by Ferry [16];

Ψ1,0 =2η2J 0
e . (5)

Here J 0
e is the steady-state shear compliance of the fluid, which can also

be calculated from η the steady-state viscosity of the solution, η0 the sol-
vent viscosity, S2/S

2
1 the relaxation-time ratio, and n1 the polymer concen-

tration, according to

J 0
e =

(
M

n1RT

)
(η−η0)

2

η2

S2

S2
1

, (6)

where R is the universal gas constant, M is the polymer molar mass,
and T is the absolute temperature. This general relationship for polymer
solutions can be applied to dilute solutions where Zimm theory includes
hydrodynamic solvent interactions when calculating the total force on each
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polymer site and predicts that S2/S
2
1 =0.206. Alternately, in the high-con-

centration limit, Rouse theory predicts that S2/S
2
1 = 0.400, where solvent-

mediated hydrodynamic interactions between polymer sites are ignored
[16].

These relationships have been shown to apply to simulations of a very
short polymer chains, like those used here. For example, Matin [14] has
shown that polymers with length N = 20 in a melt are flexible enough
to exhibit a chain-length-dependent viscosity consistent with Rouse the-
ory. Furthermore, the applicability of the Zimm model to dilute solu-
tions of short-chain polymers has been demonstrated by Dunweg and Kre-
mer [17], down to N = 30. We can therefore be confident that our short
chains are accurately simulating real polymers, and that the theoretical
relationships derived from polymer rheology should predict their behav-
ior.

3. RESULTS AND DISCUSSION

In the remainder of this paper, we express all quantities in terms of
site reduced units for which the reduction parameters are the LJ inter-
action parameters ε and σ and the mass miα of site α on molecule i.
These values are defined in terms of reduced temperature T ∗ = kBT /ε =
1.0, reduced density ρ∗ = ρσ 3 = 0.84, and the mass of each site m∗ =
miα = 1.0, while time is scaled by t∗ =σm1/2ε−1/2t . The asterisk denoting
reduced quantities will be omitted from here on.

The parameter n1 defines polymer site fraction, the proportion of
interaction sites in the system that belong to polymer molecules, and is
used henceforward to describe the concentration of the systems. Table I
lists the n1 values used in this study.

The shear rates used in these simulations were γ̇ =0.0000, 0.0005,
0.00071, 0.0010, 0.0016, and 0.0022. MD simulations of polymer solutions
usually use shear rates of between γ̇ =0.01 and γ̇ =10 (see, for example,
Refs. 18 and 19). Here we use relatively low γ̇ values, which fall within
the range of shear rates accessible to current experiments [20], so that
changes in the pressure of the system with shear rate are negligible. A fur-
ther advantage of using these low values is that the solutions persist in
Newtonian behavior over almost all shear rates allowing zero-shear-rate
viscosities to be very easily extrapolated.

The zero-shear-rate viscosity results shown in Table I were obtained
via linear extrapolation to γ̇ 2 = 0 (using a weighted least-squares fit) of
our ηs vs γ̇ 2 data (illustrated in Ref. 4). It is evident from these results
that the zero shear rate viscosity (η) increases with increasing polymer
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Table I. Simulation Parameters and Viscosity Data. (Total number of sites (Ns), number
of polymer molecules (Nm), and polymer site fraction (n1) alongside limiting first normal
stress coefficient (Ψ1,0), zero shear rate viscosity (η), and relaxation-time ratio (S2/S

2
1 )

results.)

Ns Nm n1 Ψ1,0 ×10−2 η S2/S
2
1

10000 000 0.0 −0.3±0.8 1.8±0.1
10000 100 0.2 −0.6±0.4 4.03±0.7 −0.06±0.03
10000 200 0.4 5.5±0.9 5.60±0.9 0.38±0.09
10000 300 0.6 7.8±0.7 8.2±0.1 0.28±0.04
10000 400 0.8 15.0±0.8 11.3±0.1 0.33±0.03
10000 500 1.0 33±2 16.0±0.3 0.45±0.05

Fig. 1. Zero shear viscosity, η, versus polymer concentration, n1, showing sec-
ond-order polynomial fit to all data points except n1 =1.0 (horizontal axis extends
to unphysical value of n1 =1.2 for clarity only).

concentration (n1). These data are shown in Fig. 1, where they are fitted
by a polynomial that obeys the Huggins equation,

η=η0

(
1+ [η]n1 +kH [η]2n2

1 +· · ·
)

, (7)
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where the Huggins constant kH is 0.16 ± 0.04 and the intrinsic viscosity of
the polymer in this very good solvent is [η ] = 4.0 ± 0.4. This relationship
is expected to hold only for low-concentration polymer solutions. How-
ever, our results show a persistence of dilute-like behavior over a much
broader concentration range.

Our study of the conformation of this system [4] confirms this obser-
vation in that the polymer molecules in the system exhibit a strong
excluded volume effect, up to relatively high concentrations. The mean-
field theory predicts that polymer solutions will exhibit an increasing
degree of excluded volume screening as polymer concentration is increased,
with excluded volume interactions disappearing in concentrated solutions,
whereas the scaling theory predicts that Gaussian behavior, with its obvi-
ation of long-range interactions, should be seen at lower, semi-dilute con-
centrations [21]. While our previously reported conformation results show
the expected decline in excluded volume interactions over high concentra-
tions (greater than n1= 0.4), it is not until the n1= 1.0 melt is reached
that the polymers in the system begin to display ideal Gaussian behavior.
For our very short polymer chains, there is no clear transition into a semi-
dilute regime as predicted by scaling theory.

As a further exploration of the behavior of this system, the limiting
values of the first normal stress coefficient Ψ1,0 are examined at each con-
centration. These values, listed in Table I, are calculated as the gradients
of weighted linear fits to the shear-dependent N1 data (illustrated in Ref.
4), which is linear over the low-shear region simulated. Figure 2 shows
the value of Ψ1,0 at each concentration plotted against 2η2, a multiple of
the zero-shear viscosity of each solution. Relating Eq. (5) to the gradi-
ent shown in this figure leads to the conclusion that the steady-state shear
compliance of the fluid remains constant at J 0

e =Ψ1,0/(2η2)=6.8±0.3 and
does not appreciably vary with concentration. That J 0

e may be constant
with respect to concentration, for very short polymer chains, is implied
by the results of Holmes and Ferry [23]. In their experimental study of
polystyrene molecules suspended in aroclors (chlorinated biphenyls), they
note that J 0

e goes through a maximum as the concentration is increased
and that this maximum shifts to higher concentrations as the molar mass
of the polystyrene is reduced. However, it is also clear from their results
that the height of this steady-state shear compliance maximum decreases
with decreasing polystyrene molar mass; J 0

e becomes more constant as the
polymer chains are shortened. Holmes and Ferry achieve reliable results
displaying a slight peak in J 0

e for polystyrene polymers as short as M =
82,000 g · mol−1. We therefore conclude that the trends in their results are
compatible with the observation that J 0

e is constant for very short, M =
1800 g · mol−1, polyethylene.
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Fig. 2. Limiting first normal stress coefficient �1,0 versus 2η2 (horizontal error bars
are smaller than plot symbols).

The constancy of J 0
e contrasts with the behavior of J 0

eR, the reduced
steady-state shear compliance, which is regarded as being equivalent to
S2/S

2
1 , the relaxation-time ratio of the fluid. Combining Eqs. (5) and (6)

results in

J 0
eR = Ψ1,0n1RT

2M(η−η0)
2

= S2

S2
1

.

Here, the ratio of relaxation times, S2/S
2
1 , represents the degree of hydro-

dynamic interaction in the system. As noted in Section 2, Zimm theory
predicts a value of S2/S

2
1 = 0.206 for low-concentration systems, whereas

Rouse theory predicts that S2/S
2
1 =0.400, in the high-concentration limit.

In Fig. 3, these values are plotted against n1[η], where they are
expected to form a universal curve, independent of molar mass, as exem-
plified by the data of Holmes and Ferry [22]. It is clear that, while the
result for the n1 = 0.2 system falls below the expected minimum of 0.206,
S2/S

2
1 values generally trend towards the Rouse prediction, for high con-

centrations.
The change from Zimm-like to Rouse-like behavior with increasing

polymer concentration signifies a transition from a hydrodynamically inter-
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Fig. 3. Ratio of relaxation times (S2/S
2
1 ) versus concentration, showing

Rouse (S2/S
2
1 =0.400) and Zimm (S2/S

2
1 =0.206) values.

acting regime to a concentrated regime with no apparent hydrodynamic
interactions.

4. CONCLUSION

Here, we have examined the behavior of N = 20 WCA polymer mol-
ecules solvated by a LJ fluid, over the entire concentration range. This
system models a solution of short chains of polyethylene, with M �
1800 g · mol−1.

The effects on solution behavior of using a very short polymer and
a very good solvent can be clearly seen in the persistent adherence of the
viscosities to Huggins’ prediction, which suggests that the polymers exhibit
dilute-like behavior over a broad range of concentrations.

While the steady-state shear compliance remains constant, the system
examined here shows a clear trend from Zimm-like to Rouse-like behav-
iors as the concentration is increased, indicating that hydrodynamic inter-
actions decrease according to expectations.

Similarly, the expected waning of the excluded volume effect can be
observed in the system at high concentrations. However, for these short
chains, the onset of the concentrated regime is not preceded by the rec-
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ognizable crossover from dilute to semi-dilute solution behavior predicted
by the scaling or mean-field polymer theories.

These results demonstrate that solutions of short-chain polymers,
while seemingly conforming to a range of predictable behaviors, can none-
theless challenge the limits of accepted theoretical approaches.
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